

IB · **HL** · **Chemistry**

Practice Paper 1B

Scan here to return to the course

or visit savemyexams.com

Total Marks

/35

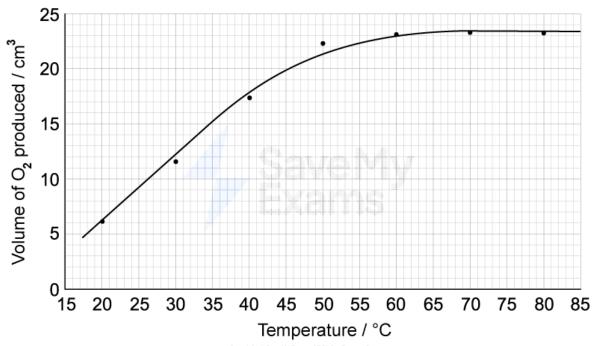
1 (a) A student investigated the effect of temperature on the rate of hydrogen peroxide (H₂O₂) decomposition using manganese(IV) oxide (MnO₂) as a catalyst. The volume of oxygen gas produced in the first 20 seconds was measured at five different temperatures.

$$2H_2O_2$$
 (aq) $\rightarrow 2H_2O$ (l) + O_2 (g)

Temperature / °C	Volume of O ₂ produced / cm ³
20	6.2
30	10.7
40	15.6
50	22.3
60	23.1
70	23.3
80	23.2

(i) Describe the trend shown in the	e data	tne	ena snown ir	tne trena	Describe the	(1)	
-------------------------------------	--------	-----	--------------	-----------	--------------	-----	--

[1]


(ii) Use particle theory to explain the effect of increasing temperature on the rate of reaction.

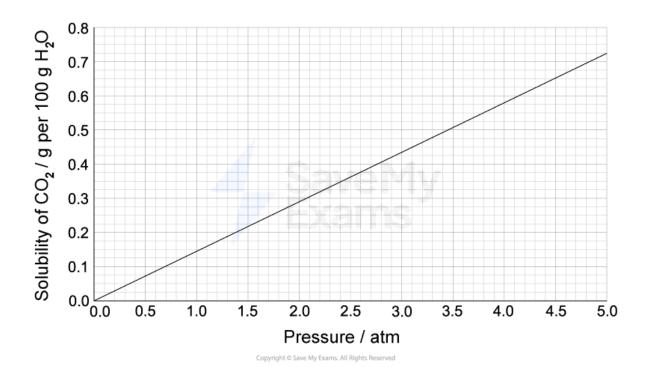
[2]

[1] 40°C
40 °C
[2]
marks)
marks)

(i) Sketch a second curve on the grid below to show how the reaction rate would differ without a catalyst. Label the curve.

[1]

(ii) Explain why the catalyst affects the rate.


[2]

(3 marks)

(e) Suggest one procedural improvement the student could make to increase accuracy in measuring the volume of gas produced.

(1 mark)

2 (a) The graph below shows how the solubility of carbon dioxide (CO₂) in water changes with pressure at a constant temperature of 25 °C.

(i) Describe the trend shown by the graph.

[1]

(ii) State the type of relationship shown between pressure and solubility.

[1]

(2 marks)

(b) Explain the trend using ideas about particle behaviour.

(2 marks)

(C)	(i) Ose the graph to determine the solubility of CO ₂ at 2.5 atm.	
		[1]
	(ii) Use the graph to determine the pressure needed for a solubility of 0.580 g p $\rm H_2O$.	er 100 g
		[1]
		(2 marks)
(d)	Explain why the graph passes through the origin.	
		(1 mark)
(e)	(i) Explain why increasing the temperature would reduce the solubility of ${\rm CO_2}$ in	water.
		[2]
	(ii) Predict how the graph would look if temperature increased.	
		[1]
		(3 marks)
(f)	Suggest one real-world situation that relies on the solubility of gases in liquids.	
		(1 mark)
(g)	Explain why the dissolution of CO_2 in water is considered an exothermic proces	S.
		(2 marks)

3 (a) A student investigates how different haloalkanes react with aqueous sodium hydroxide. Each halogenoalkane has the molecular formula C₄H₉Br, but a different structure:

Compound	Structural formula	Type of haloalkane
W	CH ₃ CH ₂ CH ₂ CH ₂ Br	Primary
X	(CH ₃) ₂ CHCH ₂ Br Primary (br	
Y	CH ₃ CHBrCH ₃	Secondary
Z	(CH ₃) ₃ CBr	Tertiary

Equal volumes of NaOH (aq) are added to each compound in separate test tubes, and the mixture is warmed. The student records the time taken for a white precipitate (AgBr) to appear.

Compound	Time for precipitate to appear / s
W	95
X	80
Y	42
Z	11

Identify the compound that reacted the fastest and suggest the	type of mechanism
involved.	

(1	ma	arl	k))

(b)	Explain why compound Z reacts faster than compound W, using ideas about castability and mechanism.	rbocation
		(2 marks)
(c)	The student uses polar protic solvents in all trials.	
	Explain how this affects the likely substitution mechanism.	
		(2 marks)
(d)	Compound W is tested again using an aprotic solvent. The rate increases signiful Suggest a reason for this observation.	icantly.
		(1 mark)
(e)	Predict the major organic product formed when compound Z reacts with NaOF State the type of reaction.	ዘ (aq).
		(2 marks)
(f)	Suggest one experimental method, other than measuring rate, that could help distinguish between the $S_{\mbox{\scriptsize N}}1$ and $S_{\mbox{\scriptsize N}}2$ mechanisms.	
		(2 marks)